Wikidata or scraping Wikipedia

From Simia
Revision as of 05:13, 25 August 2021 by Denny (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Yesterday I was pointed to a blog post describing how to answer an interesting project: how many generations from Alfred the Great to Elizabeth II? Alfred the Great was a king in England at the end of the 9th century, and Elizabeth II is the current Queen of England (and a bit more).

The author of the blog post, Bill P. Godfrey, describes in detail how he wrote a crawler that started downloading the English Wikipedia article of Queen Elizabeth II, and then followed the links in the infobox to download all her ancestors, one after the other. He used a scraper to get the information from the Wikipedia infoboxes from the HTML page. He invested quite a bit of work in cleaning the data, particularly doing entity reconciliation. This was then turned into a graph and the data analyzed, resulting in a number of paths from Elizabeth II to Alfred, the shortest being 31 generations.

I honestly love these kinds of projects, and I found Bill’s write-up interesting and read it with pleasure. It is totally something I would love to do myself. Congrats to Bill for doing it. Bill provided the dataset for further analysis on his Website. Thanks for that!

Everything I say in this post is not meant, in any way, as a criticism of Bill. As said, I think he did a fun project with interesting results, and he wrote a good write-up and published his data. All of this is great. I left a comment on the blog post sketching out how Wikidata could be used for similar results.

He submitted his blog post to Hacker News, where a, to me, extremely surprising discussion ensued. He was pointed rather naturally and swiftly to Wikidata and DBpedia. DBpedia is a project that started and invested heavily in scraping the infoboxes from Wikipedia. Wikidata is a sibling project of Wikipedia where data can be directly maintained by contributors and accessed in a number of machine-readable ways. Asked why he didn’t use Wikidata, he said he didn’t know about it. All fair and good.

But some of the discussions and comments on Hacker News surprised me entirely.

Expressing my consternation, I started discussions on Twitter and on Facebook. And there were some very interesting stories about the pain of using Wikidata, and I very much expect us to learn from them and hopefully make things easier. The number of API queries one has to make in order to get data (although, these numbers would be much smaller than with the scraping approach), the learning curve about SPARQL and RDF (although, you can ignore both, unless you want to use them explicitly - you can just use JSON and the Wikidata API), the opaqueness of the identifiers (wdt:P25 wd:Q9682 instead of “mother” and “Queen Elizabeth II”) were just a few. The documentation seems hard to find, there seem to be a lack of libraries and APIs that are easy to use. And yet, comments like "if you've actually tried getting data from wikidata/wikipedia you very quickly learn the HTML is much easier to parse than the results wikidata gives you" surprised me a lot.

Others asked about the data quality of Wikidata, and complained about the huge amount of bad data, duplicates, and the bad ontology in Wikidata (as if Wikipedia wouldn’t have these problems. I mean how do you figure out what a Wikipedia article is about? How do you get a list of all bridges or events from Wikipedia?)

I am not here to fight. I am here to listen and to learn, in order to help figuring out what needs to be made better. I did dive into the question of data quality. Thankfully, Bill provides his dataset on the Website, and downloading the query result for the following query - select * { wd:Q9682 (wdt:P25|wdt:P22)* ?p . ?p wdt:P25|wdt:P22 ?q } - is just one click away. The result of this query is equivalent to what Bill was trying to achieve - a list of all ancestors of Elizabeth II. (The actual query is a little bit more complex, because we also fetch the names of the ancestors, and their Wikipedia articles, in order to help match the data to Bill’s data).

I would claim that I invested far less work than Bill in creating my graph data. No data cleansing, no scraping, no crawling, no entity reconciliation, no manual checking. How about the quality of the two datasets?

Update: Note, this post is not a tutorial to SPARQL or Wikidata. You can find an explanation of the query in the discussion on Hacker News about this post. I really wanted to see how the quality of the data using the two approaches compares. Yes, it is an unfamiliar language for many, but I used to teach SPARQL and the basics of the languages seem not that hard to learn. Try out this tutorial for example. Update over

So, let’s look at the datasets. I will refer to the two datasets as the scrape (that’s Bill’s dataset) and Wikidata (that’s the query result from Wikidata, as of the morning of August 20 - in particular, none of the errors in Wikidata mentioned below have been fixed).

In the scrape, we find 2,584 ancestors of Elizabeth II (including herself). They are connected with 3,528 parenthood relationships.

In Wikidata, we find 20,068 ancestors of Elizabeth II (including herself). They are connected with 25,414 parenthood relationships.

So the scrape only found a bit less than 13% of the people that Wikidata knows about, and close to 14% of the relationships. If you ask me, that’s quite a bad recall - almost seven out of eight ancestors are missing.

Did the scrape find things that are missing in Wikidata? Yes. 43 ancestors are in the scrape which are missing in Wikidata, and 61 parenthood relationships are in the scrape which are missing from Wikidata. That’s about 1.8% of the data in the scrape, or 0.24% compared to the overall parent relationship data of Elizabeth II in Wikidata.

I evaluated the complete list of those relationships from the scrape missing from Wikidata. They fall into five categories:

  • Category 1: Errors that come from the scraper. 40 of the 61 relationships are errors introduced by the scrapers. We have cities or countries being parents - which isn’t too terrible, as Bill says in the blog post because they won’t have parents themselves and won’t participate in the original question of findinging the lineage from Alfred to Elizabeth, so no problem. More problematic is when grandparents or great-grandparents are identified as the parent, because this directly messes up the counting of generations: Ügyek is thought to be a son, not a grandson of Prince Csaba, Anna Dalassene is skipping two generations to Theophylact Dalassenos, etc. This means we have an error rate of at least 1.1% in the scraper dataset, besides having the low recall rate mentioned above.
  • Category 2: Wikipedia has an error. Those are rare, it happened twice. Adelaide of Metz had the wrong father and Sophie of Mecklenburg linked to the wrong mother in the infobox (although the text was linking to the right one). The first one has been fixed since Bill ran his scraper (unlucky timing!), and I fixed the second one. Note I am linking to the historic version of the article with the error.
  • Category 3: Wikidata was missing data. Jeanne de Fougères, Countess of La Marche and of Angoulême and Albert Azzo II, Margrave of Milan were missing one or both of their parents, and Bill’s scraping found them. So of the more than 3,500 scraped relationships, only 2 were missing! I added both.
  • In addition, correct data was marked deprecated once. I fixed that, too.
  • Category 4: Wikidata has duplicates, and that breaks the chain. That happened five times, I think the following pairs are duplicates: Q28739301/Q106688884, Q105274433/Q40115489, Q56285134/Q354855, Q61578108/Q546165 and Q15730031/Q59578032. Duplicates were mentioned explicitly in one of the comments as a problem, and here we can see that they happen with quite a bit of frequency, particularly for non-central items. I merged all of these.
  • Category 5: the situation is complicated, and different Wikipedia versions disagree, because the sources seem to disagree. Sometimes Wikidata models that disagreement quite well - but often not. After all, we are talking about people who sometimes lived more than a millennium ago. Here are these cases: Albert II, Margrave of Brandenburg to Ada of Holland; Prince Álmos to Sophia to Emmo of Loon (complicated by a duplicate as well); Oldřich, Duke of Bohemia to Adiva; William III to Raymond III, both Counts of Toulouse; Thored to Oslac of York; Bermudo II of León to Ordoño III of León (Galician says IV); and Robert Fitzhamon to Hamo Dapifer. In total, eight cases. I didn't edit those as these require quite a bit of thought.

Note that there was not a single case of “Wikidata got it wrong”, which surprised me a lot - I totally expected errors to happen. Unless you count the cases in Category 5. I mean, even English Wikipedia had errors! This was a pleasant surprise. Also, the genuine complicated cases are roughly as frequent as missing data, duplicates, and errors together. To be honest, that sounds like a pretty good result to me.

Also, the scraped data? Recall might be low, but the precision is pretty good: more than 98% of it is corroborated by Wikidata. Not all scraping jobs have such a high correctness.

In general, these results are comparable to a comparison of Wikidata with DBpedia and Freebase I did two years ago.

Oh, and what about Bill’s original question?

Turns out that Wikidata knows of a path between Alfred and Elizabeth II that is even shorter than the shortest 31 generations Bill found, as it takes only 30 generations.

This is Bill’s path:

  • Alfred the Great
  • Ælfthryth, Countess of Flanders
  • Arnulf I, Count of Flanders
  • Baldwin III, Count of Flanders
  • Arnulf II, Count of Flanders
  • Baldwin IV, Count of Flanders
  • Judith of Flanders
  • Henry IX, Duke of Bavaria
  • Henry X, Duke of Bavaria
  • Henry the Lion
  • Henry V, Count Palatine of the Rhine
  • Agnes of the Palatinate
  • Louis II, Duke of Bavaria
  • Louis IV, Holy Roman Emperor
  • Albert I, Duke of Bavaria
  • Joanna Sophia of Bavaria
  • Albert II o _Germany
  • Elizabeth of Austria
  • Barbara Jagiellon
  • Christine of Saxony
  • Christine of Hesse
  • Sophia of Holstein-Gottorp
  • Adolphus Frederick I, Duke of Mecklenburg-Schwerin
  • Adolphus Frederick II, Duke of Mecklenburg-Strelitz
  • Duke Charles Louis Frederick of Mecklenburg
  • Charlotte of Mecklenburg-Strelitz
  • Prince Adolphus, Duke of Cambridge
  • Princess Mary Adelaide of Cambridge
  • Mary of Teck
  • George VI
  • Elizabeth II

And this is the path that I found using the Wikidata data:

  • Alfred the Great
  • Edward the Elder (surprisingly, it deviates right at the beginning)
  • Eadgifu of Wessex
  • Louis IV of France
  • Matilda of France
  • Gerberga of Burgundy
  • Matilda of Swabia (this is a weak link in the chain, though, as there might possibly be two Matildas having been merged together. Ask your resident historian)
  • Adalbert II, Count of Ballenstedt
  • Otto, Count of Ballenstedt
  • Albert the Bear
  • Bernhard, Count of Anhalt
  • Albert I, Duke of Saxony
  • Albert II, Duke of Saxony
  • Rudolf I, Duke of Saxe-Wittenberg
  • Wenceslaus I, Duke of Saxe-Wittenberg
  • Rudolf III, Duke of Saxe-Wittenberg
  • Barbara of Saxe-Wittenberg (Barbara has no article in the English Wikipedia, but in German, Bulgarian, and Italian. Since the scraper only looks at English, they would have never found this path)
  • Dorothea of Brandenburg
  • Frederick I of Denmark
  • Adolf, Duke of Holstein-Gottorp (husband to Christine of Hesse in Bill’s path)
  • Sophia of Holstein-Gottorp (and here the two lineages merge again)
  • Adolphus Frederick I, Duke of Mecklenburg-Schwerin
  • Adolphus Frederick II, Duke of Mecklenburg-Strelitz
  • Duke Charles Louis Frederick of Mecklenburg
  • Charlotte of Mecklenburg-Strelitz
  • Prince Adolphus, Duke of Cambridge
  • Princess Mary Adelaide of Cambridge
  • Mary of Teck
  • George VI
  • Elizabeth II

I hope that this is an interesting result for Bill coming out of this exercise.

I am super thankful to Bill for doing this work and describing it. It led to very interesting discussions and triggered insights into some shortcomings of Wikidata. I hope the above write-up is also helpful, particularly in providing some data regarding the quality of Wikidata, and I hope that it will lead to work in making Wikidata more and easier accessible to explorers like Bill.

Update: there has been a discussion of this post on Hacker News.


Previous entry:
Double copy in gravity
Next entry:
CodeNet problem descriptions on the Web