Score : 1700 points
There is a railroad in Takahashi Kingdom. The railroad consists of N sections, numbered 1, 2, ..., N, and N+1 stations, numbered 0, 1, ..., N. Section i directly connects the stations i-1 and i. A train takes exactly A_i minutes to run through section i, regardless of direction. Each of the N sections is either single-tracked over the whole length, or double-tracked over the whole length. If B_i = 1, section i is single-tracked; if B_i = 2, section i is double-tracked. Two trains running in opposite directions can cross each other on a double-tracked section, but not on a single-tracked section. Trains can also cross each other at a station.
Snuke is creating the timetable for this railroad. In this timetable, the trains on the railroad run every K minutes, as shown in the following figure. Here, bold lines represent the positions of trains running on the railroad. (See Sample 1 for clarification.)
When creating such a timetable, find the minimum sum of the amount of time required for a train to depart station 0 and reach station N, and the amount of time required for a train to depart station N and reach station 0. It can be proved that, if there exists a timetable satisfying the conditions in this problem, this minimum sum is always an integer.
Formally, the times at which trains arrive and depart must satisfy the following:
The input is given from Standard Input in the following format:
N K A_1 B_1 A_2 B_2 : A_N B_N
Print an integer representing the minimum sum of the amount of time required for a train to depart station 0 and reach station N, and the amount of time required for a train to depart station N and reach station 0. If it is impossible to create a timetable satisfying the conditions, print -1 instead.
3 10 4 1 3 1 4 1
26
For example, the sum of the amount of time in question will be 26 minutes in the following timetable:
In this timetable, the train represented by the red line departs station 0 at time 0, arrives at station 1 at time 4, departs station 1 at time 5, arrives at station 2 at time 8, and so on.
1 10 10 1
-1
6 4 1 1 1 1 1 1 1 1 1 1 1 1
12
20 987654321 129662684 2 162021979 1 458437539 1 319670097 2 202863355 1 112218745 1 348732033 1 323036578 1 382398703 1 55854389 1 283445191 1 151300613 1 693338042 2 191178308 2 386707193 1 204580036 1 335134457 1 122253639 1 824646518 2 902554792 2
14829091348