Score : 500 points

Problem Statement

In Takahashi Kingdom, which once existed, there are N cities, and some pairs of cities are connected bidirectionally by roads. The following are known about the road network:

  • People traveled between cities only through roads. It was possible to reach any city from any other city, via intermediate cities if necessary.
  • Different roads may have had different lengths, but all the lengths were positive integers.

Snuke the archeologist found a table with N rows and N columns, A, in the ruin of Takahashi Kingdom. He thought that it represented the shortest distances between the cities along the roads in the kingdom.

Determine whether there exists a road network such that for each u and v, the integer A_{u, v} at the u-th row and v-th column of A is equal to the length of the shortest path from City u to City v. If such a network exist, find the shortest possible total length of the roads.

Constraints

  • 1 \leq N \leq 300
  • If i ≠ j, 1 \leq A_{i, j} = A_{j, i} \leq 10^9.
  • A_{i, i} = 0

Inputs

Input is given from Standard Input in the following format:

N
A_{1, 1} A_{1, 2} ... A_{1, N}
A_{2, 1} A_{2, 2} ... A_{2, N}
...
A_{N, 1} A_{N, 2} ... A_{N, N}

Outputs

If there exists no network that satisfies the condition, print -1. If it exists, print the shortest possible total length of the roads.


Sample Input 1

3
0 1 3
1 0 2
3 2 0

Sample Output 1

3

The network below satisfies the condition:

  • City 1 and City 2 is connected by a road of length 1.
  • City 2 and City 3 is connected by a road of length 2.
  • City 3 and City 1 is not connected by a road.

Sample Input 2

3
0 1 3
1 0 1
3 1 0

Sample Output 2

-1

As there is a path of length 1 from City 1 to City 2 and City 2 to City 3, there is a path of length 2 from City 1 to City 3. However, according to the table, the shortest distance between City 1 and City 3 must be 3.

Thus, we conclude that there exists no network that satisfies the condition.


Sample Input 3

5
0 21 18 11 28
21 0 13 10 26
18 13 0 23 13
11 10 23 0 17
28 26 13 17 0

Sample Output 3

82

Sample Input 4

3
0 1000000000 1000000000
1000000000 0 1000000000
1000000000 1000000000 0

Sample Output 4

3000000000