Score : 700 points
There is an integer sequence of length 2^N: A_0, A_1, ..., A_{2^N-1}. (Note that the sequence is 0-indexed.)
For every integer K satisfying 1 \leq K \leq 2^N-1, solve the following problem:
Input is given from Standard Input in the following format:
N
A_0 A_1 ... A_{2^N-1}
Print 2^N-1 lines. In the i-th line, print the answer of the problem above for K=i.
2 1 2 3 1
3 4 5
For K=1, the only possible pair of i and j is (i,j)=(0,1), so the answer is A_0+A_1=1+2=3.
For K=2, the possible pairs of i and j are (i,j)=(0,1),(0,2). When (i,j)=(0,2), A_i+A_j=1+3=4. This is the maximum value, so the answer is 4.
For K=3, the possible pairs of i and j are (i,j)=(0,1),(0,2),(0,3),(1,2),(1,3),(2,3) . When (i,j)=(1,2), A_i+A_j=2+3=5. This is the maximum value, so the answer is 5.
3 10 71 84 33 6 47 23 25
81 94 155 155 155 155 155
4 75 26 45 72 81 47 97 97 2 2 25 82 84 17 56 32
101 120 147 156 156 178 194 194 194 194 194 194 194 194 194