Score : 300 points
You are given two non-negative integers L and R. We will choose two integers i and j such that L \leq i < j \leq R. Find the minimum possible value of (i \times j) \mbox{ mod } 2019.
Input is given from Standard Input in the following format:
L R
Print the minimum possible value of (i \times j) \mbox{ mod } 2019 when i and j are chosen under the given condition.
2020 2040
2
When (i, j) = (2020, 2021), (i \times j) \mbox{ mod } 2019 = 2.
4 5
20
We have only one choice: (i, j) = (4, 5).