Score : 300 points

Problem Statement

You are given two non-negative integers L and R. We will choose two integers i and j such that L \leq i < j \leq R. Find the minimum possible value of (i \times j) \mbox{ mod } 2019.

Constraints

  • All values in input are integers.
  • 0 \leq L < R \leq 2 \times 10^9

Input

Input is given from Standard Input in the following format:

L R

Output

Print the minimum possible value of (i \times j) \mbox{ mod } 2019 when i and j are chosen under the given condition.


Sample Input 1

2020 2040

Sample Output 1

2

When (i, j) = (2020, 2021), (i \times j) \mbox{ mod } 2019 = 2.


Sample Input 2

4 5

Sample Output 2

20

We have only one choice: (i, j) = (4, 5).