Score : 600 points
Given are integers L and R. Find the number, modulo 10^9 + 7, of pairs of integers (x, y) (L \leq x \leq y \leq R) such that the remainder when y is divided by x is equal to y \mbox{ XOR } x.
The XOR of integers A and B, A \mbox{ XOR } B, is defined as follows:
Input is given from Standard Input in the following format:
L R
Print the number of pairs of integers (x, y) (L \leq x \leq y \leq R) satisfying the condition, modulo 10^9 + 7.
2 3
3
Three pairs satisfy the condition: (2, 2), (2, 3), and (3, 3).
10 100
604
1 1000000000000000000
68038601
Be sure to compute the number modulo 10^9 + 7.