Score : 600 points
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem:
Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}.
Input is given from Standard Input in the following format:
N
a_1 a_2 ... a_N
u_1 v_1
u_2 v_2
:
u_{N-1} v_{N-1}
Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k.
10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10
1 2 3 3 4 4 5 2 2 3
For example, the sequence A obtained from the shortest path from Vertex 1 to Vertex 5 is 1,2,5,3,4. Its longest increasing subsequence is A_1, A_2, A_4, A_5, with the length of 4.